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A deeper insight into the relationship between the shape of a slowly varying nonuniform Bragg
grating and its reflectance spectrum is obtained through a qualitative graphical analysis of the local
photonic band gaps in the grating and a quantitative WKB (or phase-integral) approximation of the
grating fields. Three different gratings—a linearly chirped grating, a moiré grating, and a Gaussian
tapered grating—are analyzed in detail to illustrate the power of the technique. The results are in
excellent agreement with the exact numerical results obtained via coupled-mode analysis.
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I. INTRODUCTION

Gratings in fibers or other waveguide geometries have
many applications, including wavelength-selective mir-
rors, wavelength-selective couplers, filters, frequency ref-
erences, mode converters, modulators, and pulse com-
pressors [1-5]. The use of slowly varying gratings, where
the local period or depth of modulation varies along the
grating, provides extra degrees of freedom, which can be
exploited in the design of grating-based devices [1,6-8]. A
deeper knowledge and understanding of the relationship
between the profile of the grating—that is, the variation
of grating depth and/or period along the grating—and
the resulting reflectance spectrum will be of benefit in
grating design.

The properties of uniform gratings are well understood.
If the incident field has a wavelength A close to the Bragg
wavelength of the grating it will be strongly reflected
through constructive interference of the waves reflected
by each period of the grating. The Bragg wavelength for
a grating with average refractive index 7 and grating pe-
riod A is Ap = 2nA. Note that the Bragg wavelength
depends on both the period and the average refractive
index. The width of the band of strongly reflected wave-
lengths (the “photonic band gap” or reflection band) is
AX = ApAn/a, where An is the depth of modulation of
the refractive index in the grating. When the incident
wavelength lies inside the reflection band, the fields in
the grating are evanescent waves (exponential functions)
and most of the light is reflected. However, when the
incident wavelength lies outside the reflection band, the
fields in the grating are propagating waves (oscillatory
functions) and most of the light is transmitted.

In a nonuniform Bragg grating, the average refractive
index 7, the grating period A, and the depth of modula-
tion An may vary slowly along the length of the grating.
At each position along the grating, the grating has a local
Bragg wavelength and a local photonic band gap. When
an incident wave of a given wavelength travels through
the grating it will encounter two types of regions. Re-
gions where it lies outside the local reflection band, inter-
acts weakly with the grating, and will propagate without
much coupling to reflected wave, and regions where it lies
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inside the local reflection band, interacts strongly with
the grating, and very little light will propagate through
these regions, most of it being coupled to the reflected
wave.

Coupled-mode analysis and a recent effective-medium
reformulation [9] of the coupled-mode equations are
briefly summarized in Sec. II. In Sec. III the construc-
tion and interpretation of reflection-band diagrams is dis-
cussed. These diagrams display the location of the local
photonic band gap as a function of position in the grat-
ing and give qualitative information about the reflectance
spectrum. In Sec. IV the WKB or phase-integral method
and its application to nonuniform gratings are discussed.
It can be used to obtain the quantitative information
about the results deduced from the reflection-band dia-
grams. The mathematical details of the WKB analysis
are given in the Appendix. Three very different gratings
have been chosen — a linearly chirped grating, a Moiré
grating, and a Gaussian-tapered grating — to illustrate
the techniques of Secs. III and IV. The reflection-band
diagram and WKB results for each structure are ana-
lyzed in detail in Sec. V and compared to results ob-
tained from direct solution of the coupled-mode differen-
tial equations.

II. COUPLED MODES
AND EFFECTIVE-MEDIUM THEORY

The coupled-mode analysis for nonuniform gratings
closely follows the standard analysis for uniform grat-
ings [1-3]. The analysis given here is valid for gratings
where the modulation depth is not too large and the vari-
ations in the depth and period of the grating are not too
fast. A detailed and rigorous derivation of the coupled-
mode equations using a multiple-scale analysis has been
given recently [9] and can be used to include higher-order
effects that become important in deeper gratings.

The refractive index variation is written as

n(z) = no [1 + 0(2) + 2h(z) cos (i—:z + 2d>(z))} . ()
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where ¢, o, and h are all slowly varying quantities and
describe the phase, average refractive index, and modu-
lation amplitude of the grating, respectively, and Ay is
the nominal period of the Bragg grating. The detuning
parameter
g
A =kng— — 2

Sl (2)
is introduced, where k is the free-space wave number of
the incident light. The electric field is written in the form

T

E(2) = u(z) exp (z et iqﬁ(z))
+v(z) exp (_iAlOz - i¢(z)) ) (3)

where u(z) and v(z) are the slowly varying amplitudes
of the forward and backward propagating fields, respec-
tively, and satisfy the coupled-mode equations

u'(z) = +i [86(2) u(z) + K(2) v(z)], (4a)
v'(2) = —i [8(2) v(z) + K(2) u(2)], (ab)
where
§(z) = A+ Aloa(z) — ¢'(2), (5a)
K(z) = K’%h(z). (5b)

The quantities §(z) and £(z) represent the local detuning
and local coupling strengths, respectively. Equation (5a)
shows that variations in the background refractive index
0(z) have the same effect as variations in the period ¢’(z).
The local Bragg condition becomes §(z) = 0.

The reflectivity of the grating is

r(A) = lim Mezz‘Az, (6)

=75 u()

with the condition v(z) — 0 as z — oo imposed. If there
is no grating for z < 0, then r(A) = v(0)/u(0).

Although it is possible to analyze the coupled-mode
equations in the form given in Egs. (4), it is advantageous
to introduce the following transformations [9]:

E(z) = u(z) +v(z2), (7a)
H(z) = u(z) — v(z), (7b)
() = 6(2) + K(2), (7c)
u(z) = 8(2) - w(2). (7d)
The coupled-mode equations then become
£'(z) = i (=) H(z), (82)
H'(2) = ie(2) E(2). (8b)

These equations correspond to the propagation of an elec-
tromagnetic plane wave with unit frequency through a
medium with dielectric permittivity e(z) and magnetic
permeability p(2). The local refractive index in this ef-
fective medium satisfies
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nea(2) = Ve(2)u(z) = v/6%(2) — w2(2). (9)

This local effective index is real when |6(z)| > x(z) and
the fields at this point in the grating are (locally) prop-
agating waves, which correspond to wavelengths outside
the local reflection band. This local effective index is pure
imaginary when |6(z)| < x(z) and the fields at this point
in the grating are (locally) evanescent waves, which cor-
respond to wavelengths inside the local reflection band
and any field is strongly reflected when it reaches this
region of the grating.

III. REFLECTION-BAND DIAGRAMS

Information about the local photonic band gap or re-
flection band in a slowly varying grating can be conve-
niently displayed on a reflection-band diagram. Some ex-
amples are Figs. 1, 4, and 6. These diagrams are ana-
lyzed individually in Sec. V.

Each point on the diagram corresponds to a particular
detuning A for the incident wave and a particular point
z along the grating. The local Bragg condition 6(z) = 0
is shown by a solid curve given by

A=¢(z)— Aloa(z). (10a)

The shaded region surrounding the solid curve shows the
extent of the local photonic band gap or reflection band.
The band gap edges are given by the condition §(z) =
+k(z) which yields the curves

A=¢(z) - Aloa(z) + Aloh(z). (10b)

Thus, the width of the local photonic band gap is
2mwh(z)/Ao. If a point lies in a shaded region, then the
fields in the grating at that point and for that value of the
detuning are evanescent; if it lies in an unshaded region,
the local fields are propagating.

The qualitative features of the reflectance spectrum of
any slowly varying Bragg grating can be obtained directly
from the band diagram. For each incident wavelength, a
horizontal line drawn across the band diagram at the
corresponding value of the detuning A gives the behav-
ior of the fields in the grating. The incident wave travels
freely through the unshaded regions, but is strongly re-
flected whenever it encounters a shaded region; a very
small amount is transmitted through the evanescent re-
gion. This is analogous to the strong reflections in barrier
tunneling problems in quantum mechanics. In addition
to the strong reflections at the band edges, there are weak
reflections at the front and back ends of the grating; this
can be viewed essentially as an impedance mismatch ef-
fect.

Several examples of band diagrams are analyzed in Sec.

V.
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IV. PHASE-INTEGRAL METHOD (WKB)

Semianalytical approximations are obtained for the
reflectance spectrum using the phase-integral or WKB
method [10]. The field in each propagating or evanescent
region is written as the product of the local oscillatory or
exponentially varying field and a slowly varying ampli-
tude. The WKB method is essentially a standard slowly
varying amplitude analysis supplemented by a procedure
to match the fields across the turning points between the
propagating and evanescent regions.

There are three separate effects that are treated in the
WKB analysis here. The first effect is barrier tunneling
through evanescent regions (where the wave is within the
local photonic band gap). The relation between the inci-
dent, reflected, and transmitted waves can be described
by a 2 x 2 transfer matrix W(0) whose explicit form is
given in the Appendix. The barrier factor 6 is given by

0= /|neg(z)|dz, (11)

where the integration extends over the length of the bar-
rier (or evanescent) region. The barrier factor 6 can be
regarded as a generalization of the grating strength <L
associated with uniform gratings.

The second effect is simple propagation through re-
gions of the grating where the wave is outside the local
photonic gap and only weakly interacts with the grating.
This is described by a transfer matrix P(¢) where the
phase factor ¢ is given by

¢ = /neﬂ:(z)dz, (12)

where the integration extends over the length of the prop-
agating region.

The final effect is reflection at the ends of a finite grat-
ing which is described by a matrix I'(Z), where Z is the
local impedance which satisfies

g2 M _0—n
€ S+ kK’

(13)

The choice of square root is detailed in the Appendix.

The total effect of the grating is then given by the
product of the appropriate transfer matrices. The WKB
derivation and the explicit form of all the various transfer
matrices are given in the Appendix.

However, unlike the situation in quantum mechanics,
there is a further complication here. The effective re-
fractive index can be real in two different ways. First, if
both € and p are positive, n.g is real and waves propagate
freely. Such a region will be labeled a “normal” propa-
gating region. However, if both € and p are negative, neg
is still real and waves propagate freely. Such a region will
be labeled an “anomalous” propagating region. There is
nothing to distinguish the propagation of waves in either
region on their own, but when a normal and anomalous
region are separated by an evanescent region the con-
nection between the reflected and transmitted waves is
different from the situation when an evanescent region
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separates two propagating regions of the same kind (i.e.,
both normal or both anomalous).

The WKB analysis possesses certain advantages over
a direct solution of the coupled-mode equations. First,
for some structures closed form expressions or accurate
approximations to the phase integrals can be obtained.
In such cases, the WKB result can be calculated much
faster than the coupled-mode solution. Although compu-
tational speed is seldom an issue, such advantages may
be important in the interactive design or optimization
of nonuniform gratings. More importantly, however, the
WKB results isolate and identify the features of the grat-
ing that are associated with the various features of the
reflectance spectrum, giving a much deeper understand-
ing of nonuniform gratings.

V. EXAMPLES
A. Linearly chirped grating

Linearly chirped gratings are of interest in dispersion
compensation [6]. As will be shown below, different in-
cident frequencies (detunings) can be delayed by differ-
ent amounts; this effect can be used to compensate for
any chromatic dispersion experienced after long distance
propagation. Extremely accurate results for chirped grat-
ings are obtained here, much faster than and without
direct solution of the coupled-mode equations.

Consider a linearly chirped grating with a refractive
index profile

n(z) = no [1 + 2hg cos (27rAi(1 + C’z))] ,

0

where C is a chirp parameter. The local detuning and
coupling strengths are

0(z) =A— z7£z, (15a)
Ao
h

K(2) = Ko = 2. (15b)
Ao

The reflection-band diagram is shown in Fig. 1 and
consists of a sloped line representing the Bragg condition
surrounded by a photonic band gap of constant width.
From Egs. (10) the Bragg condition is

A =2wCz/Ay (16a)
and the edges of the photonic band gap are given by
A =7(2Cz + ho) /Ao (16b)

and, in this case, the reflection band has a constant
height of 2whg/Ag. For each detuning A in the range
|A] < w(LC — ho)/Ao the grating can be divided into
three regions as shown in Fig. 1: a single evanescent re-
gion of length L.g sandwiched between two propagating
regions of length L; and Ly, respectively. Outside this
range of detunings, the interaction with the grating is
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FIG. 1. Reflection-band diagram for a linearly chirped
grating. The solid diagonal line represents the Bragg con-
dition, and the shaded region the extent of the local photonic
band gap. For any detuning, the grating divides into three
regions: a central barrier of length L.g surrounded by prop-
agating regions of lengths L; and Ly.

very weak and the reflectance spectrum is similar to that
for a uniform grating outside its reflection band, and will
not be considered further here.

The lengths of the regions shown in Fig. 1 can be cal-
culated easily from Egs. (16). In particular, the length
of the evanescent region (where all the strong interaction
occurs) is Leg = ho/|C|. Treating this interaction re-
gion as a uniform grating, the effective grating strength

J

is approximately

2
wh§

KoLeg =

This estimate differs from the more accurate WKB result
obtained later only by a numerical factor.

From Fig. 1 the distance traveled down the grating be-
fore encountering an evanescent region varies with detun-
ing (or frequency). Consequently, upon reflection, waves
with higher frequencies are delayed more than those with
lower frequencies (or vice versa if the grating is reversed).
The delay time is approximately 7o Ldelay/Co, Where co is
the speed of light in vacuo and

A h
Laelay = 2L; = ;%A + (L - EO) ) (18)

This simple estimate of the delay is compared in Fig. 2
with the exact delay calculated from the coupled-mode
equations using

0
Ldelay = %7 (19)

where ¢ is the phase of the reflectivity » = |r|exp(iyp).
The slope of the simple estimate is slightly overestimated
because the phase velocity co/neg over the section L; is
not constant but increases as the band gap is approached,
resulting in a smaller delay. The simple estimate also
does not predict the oscillations that arise from interfer-
ence of waves reflected from the front and back of the
gratings.

The WKB approximation for the reflectivity is ob-
tained by multiplying together five 2 x 2 transfer matrices

u(0 - — u(L
HO” = T(2:) - P(¢:) - W(6) - P~1(¢) - T~1(Zy) HL;] (20)
The matrix W represents the effects of tunneling through and reflection from the evanescent region and the barrier
factor is
z2 71_2}7%
= = —— 21
0= [ inea(2)idz = gizae, (21)

where z; and 2, are the turning points at the ends of the evanescent region. Apart from a numerical factor of 4 the
barrier factor 6 agrees with the approximate expression for the effective grating strength in Eq. (17). The matrices P
represent propagation over the regions of length L; and Ly with accumulated phases

} ) (22a)

[ Ao L L w2h3
¢ = /.% neg(z) dz = nC {6 (—-2—) Neft ( 2) " Az In
} . (22b)

L
[ Ao L L w2h2
by = /z; neg(z)dz = ~anC {6 (5) Nef (5) — Az In

§(=%) + ner(—7%)
7Tho/A0
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Ldelay (mm)

17772773 74 sA/KO

FIG. 2. Effective delay length on reflection from a linearly
chirped grating vs normalized detuning A/ko. The straight
line is a crude estimate of the chirp using the reflection-band
diagram. The dashed curve is the WKB approximation. The
solid curve is the coupled-mode analysis. The oscillations are
due to interference of small reflections from the ends of the
grating.

The matrices I' represent the effects of reflection at the
ends of the grating with impedances

#(=L/2)

%= neg(—L/2)’ (252)
_ m(L/2)
z = (23b)

All of the WKB quantities for a linearly chirped grat-
ing have been evaluated in closed form. The reflectivity
can be obtained by evaluating the above explicit expres-
sions and multiplying together the transfer matrices; this
is much faster than solving the pair of coupled differen-
tial equations. The numerical and WKB results for the
reflectance |r|? are compared in Fig. 3. The accuracy ob-
tained for the phase of the reflectivity is demonstrated
in Fig. 2. The grating analyzed has an index modula-
tion of hy = 1074, a period of Ag = 0.5 um, a length of
L = 2 cm, and a chirp of C = 3 x 107% mm™!, which

e
o
)

Al

2 3 4 5

FIG. 3. Reflection spectrum for a linearly chirped grating
with ho = 107*, Ag = 0.5 pm, L = 20 mm, and C =3 x107°
mm™'. The dashed curve is the WKB approximation. The
solid curve is the coupled-mode analysis.
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gives a grating with an average reflectance of 96% over
the central range of detunings. Except at the edges of this
region the agreement between the exact and WKB results
is excellent. This agreement improves for stronger grat-
ings. For weaker gratings the errors are slightly larger:
for a grating where the maximum reflectance is only 85%
the error in the WKB result is only about 3%, and the
agreement in the phase remains as good as in Fig. 2.

B. Moiré gratings

Moiré gratings are of interest for fiber grating res-
onators and very narrow band filter responses [4]. A
moiré grating can be considered as the superposition of
two uniform gratings with slightly different periods. The
refractive index profile has a typical interference beat
pattern. Consider a moiré grating which is exactly two
beat lengths long with a profile

n(z) = no [1 + 2hosin (%%) cos (%ﬁ)] . (29)

In contrast to the chirped grating, here, the detuning is
constant §(z) = A and the local coupling strength varies
sinusoidally

k(z) = Ko sin (2#%) , (25)

where kg = mho/Ag. Thus, the width of the local pho-
tonic band gap also varies sinusoidally. The reflection-
band diagram for this moiré grating is shown in Fig. 4.
The first and second halves of the grating are identical
except that the grating strength over the second half of
the grating as given by Eq. (25) is negative. From Eq. (1),

|
|
|
|
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|
|
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|
|
|
|
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|
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|
'
'

FIG. 4. Reflection-band diagram for a moiré grating. The
solid line represents the Bragg condition and the shaded re-
gion the extent of the local photonic band gap. The vertical
dashed line represent a m phase change in the center of the
grating. The horizontal dashed line shows the length of a
resonant cavity bounded by two barrier regions.
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this is equivalent to having a positive grating strength but
having a phase shift of 2¢(z) = 7 over the second half of
the grating. The discontinuous phase jump between the
two halves of the grating is also indicated by the crossing
over of the two photonic band edges in the center of the
reflection-band diagram.

For any detuning in detuning range |A| < k¢ the grat-
ing divides into five sections: a central propagating re-
gion (or cavity) surrounded by two evanescent regions
(or barriers) and finally an initial and a final propagat-
ing section. The central cavity region behaves exactly like
a Fabry-Pérot resonator and the reflectance spectrum of
the grating should show transmission fringes whenever
the phase change across the cavity (including the phase
jump at the center) gives rise to destructive interference
of the waves reflected from each end of the cavity. This
cavity condition is

20, = 2/ neg(z)dz = nm,

-2z

L ._I(A)
zy = —sin — 1.
27 Ko

For strong Moiré gratings the transmission fringes are
extremely narrow and difficult to locate directly using a
numerical solution. In fact, the WKB result was used to
obtain an initial estimate of the location of the fringes,
which was then improved numerically. The exact re-
flectance spectrum for a moiré grating with index modu-
lation of hg = 2 x 1074, a period of Ag = 0.5 um, and a
length of L = 3 cm is shown in Fig. 5 and a comparison
of the exact and WKB results for the transmission reso-
nances is given in Table I. In every case shown the error
is less than 1% and in many cases much smaller still.
The accuracy improves with grating strength, although
this becomes harder to verify directly, as the couple-mode
analysis itself becomes less accurate.

(26a)

where

(26b)

I

0.8

0.6

0.4

0.2

Ak
-1.5 -1 -0.5 0 0.5 1 1.5

FIG. 5. Reflection spectrum for a moiré grating with
ho =2x107*% A¢ = 0.5 pm, L = 30 mm. The transmission
fringes are the result of interference effects in the resonant
cavities seen in the band diagram. A comparison with the
WKB predictions for the fringe locations is given in Table I.
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TABLE I. Comparison of WKB approximation and exact
coupled-mode (CM) calculation of the location of transmis-
sion fringes in the reflectance spectrum of a moiré grating.
The location of the fringes is given by the normalized detun-
ing A/ko.

(koL,n) WKB [Egs. (26)] CM
(10,1) 0.9971 1.0050
(20,1) 0.7577 0.7544
(20,2) 0.9971 0.9982
(30,1) 0.6290 0.6282
(30,2) 0.8585 0.8559
(30,3) 0.9971 0.9969
(60,1) 0.4514 0.4513
(60,2) 0.6290 0.6288
(60,3) 0.7577 0.7573
(60,4) 0.8585 0.8579
(60,5) 0.9384 0.9370
(60,6) 0.9971 0.9963

The WKB transfer matrix for the moiré grating is

L(Z:) - P(3¢c) - W(B) - P(¢c) - W(0) - PTH(36c) - T (Zy),

(27)
where ¢, is given above, the barrier factor 8 is
L—2z,
6= / et (2)]dz (28)
z1
and
Zi = Zf = sgn(A). (29)

The phase integrals for ¢, and 6 can be evaluated in
terms of hypergeometric functions. The simple power
law approximations to these hypergeometric functions
given below are also useful and reasonably accurate ex-
pressions:

AL 11, A? koL | A |7*
= —y = S T = — - ) 30

¢c 8Ko 2Fl(2v 252’ K%) 27 | kKo ( a’)

2 A2

f= kol A°L oF 571,2;1___2_

4 4".‘,0 22 Ko

7/4
~ oL (1 _|2 ) (30b)
T Ko

Despite their complexity, evaluating the above exact ex-
pressions is significantly more efficient than solving cou-
pled differential equations.

C. Gaussian-tapered gratings

Gratings written holographically into fibers or wave-
guides have a refractive index profile which is determined
by the intensity profile of the writing beams. If the index
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change is taken to be proportional to the intensity of the
writing beam, then a grating produced by two interfering
identical beams has a refractive index profile that can be
written in the form

n(z) = no [1 + 4ho f(z) cos? (nﬁ)] (31a)

=ng {{1 + 2ho f(2)} + 2ho f(2) cos (%Aio)] ,
(31b)

where f(z) is the profile of the interfering beams. Note
that both the coefficient of the oscillatory part and the
average refractive index vary according to the beam pro-
file. Thus, even though the grating period Ag is a con-
stant, the local Bragg wavelength varies along the grating
because of the slowly varying average refractive index.
The local detuning and coupling strength are

0(z) = A+ 2k0f(2),
k(2) = kof(2),

(32a)
(32b)

where kg = mho/Ao. The second term in 6(z) is the
self-induced chirp that arises from the varying average
refractive index.

An important example is when the writing beams have
a Gaussian profile with f(2) = exp(—2z2/w?) where we
also assume for convenience that the exponential tails of
the grating extend to infinity. This structure has been
briefly treated in an earlier paper [9].

The reflection-band diagram for the Gaussian grating
is shown in Fig. 6. The Bragg condition is represented
by the line

-31(0

FIG. 6. Reflection-band diagram for a Gaussian grating.
The solid curve represents the Bragg condition and the shaded
region the extent of the local photonic band gap. The horizon-
tal dashed line shows the length of a resonant cavity bounded
by two barrier regions. The barrier regions are produced by
the tails of the Gaussian beam and are weak.
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A = —2kq exp(—2%/w?). (33)
The width of the local photonic band gap is

2k9 exp(—2z2 /w?).

From the band diagram we see that for detunings in
the range —kg < A < 0 there is a Fabry-Pérot type
cavity similar to that in the moiré grating. The cavity
condition here is

2¢. =2 /=1 neg(z)dz = (2n + 1), (34a)

where

In|—

A

ro ‘ (34b)

zZy=w

The reflectance spectrum for a Gaussian grating with
ko = mho/Ao = 1 mm~! and w = 30 mm is shown in
Fig. 7. Transmission fringes occur as expected only in
the region —ko < A < 0. The reflectance is virtually
one over the range —3kg < A < —kg where the band
diagram has a single strong barrier, and the reflectance
drops to virtually zero outside these ranges. The region
with the transmission fringes is analyzed in detail.

A comparison of the location of the transmission
fringes using this cavity condition (which corresponds to
a first-order WKB calculation) and using coupled-mode
analysis is given in Table II. The agreement improves as
the strength of the grating increases. The agreement is
also better for fringes deeper within the reflection band
(A close to —mho/Ag). However, the performance of
the WKB approximation is not as impressive as for the
chirped and moiré gratings. The reason can be seen in
Fig. 6. The resonant cavity near the edge of the reflection
band (for A close to zero) is bounded by two very nar-
row barrier regions produced by the tails of the Gaussian
beam profile. WKB analysis does not work as well for
weak barriers. A second-order WKB expression for the
cavity phase ¢, is given in Eq. (A13) and the correspond-
ing results are tabulated in Table II. The second-order
results are, in general, closer to the exact coupled-mode
analysis.

The WKB transfer matrix for the Gaussian grating is

R
1

q 0.8
0.6
0.4

0.2

n

-4 -3 -2 -1 1 2 3

3 Mg

FIG. 7. Reflection spectrum for a Gaussian grating with
ko = mho/Ao = 1 mm™' and L = 30 mm. Transmission
fringes occur over the region —ko < A < 0.
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TABLE II. Comparison of both first- and second-order
WKB approximations and exact CM calculation of the lo-
cation of transmission fringes in the reflectance spectrum of a
Gaussian-tapered grating. The location of the fringes is given
by the normalized detuning A/xo.

(kow,n) WKB [Egs. (34)] WKB2 [Eq. (A13)] CM
(10,1) -0.5033 -0.4425 -0.2239
(20,1) -0.7356 -0.6910 -0.6549
(20,2) -0.2994 -0.2716 -0.1873
(30,1) -0.8198 -0.7862 -0.7822
(30,2) -0.5033 -0.4764 -0.4537
(30,3) -0.2376 -0.2193 -0.1721
(60,1) -0.9079 -0.8888 -0.8996
(60,2) -0.7356 -0.7172 -0.7245
(60,3) -0.5775 -0.5611 -0.5633
(60,4) -0.4323 -0.4180 -0.4147
(60,5) -0.2994 -0.2874 -0.2782
(60,6) -0.1790 -0.1695 -0.1533

L(2Z:) - P(¢:) - W(0) - P(¢c) - W(O) - P~ (o) - T7H(2y),
(35)

where Z; = Z5 = sgn(A), and the barrier and phase
integrals are defined as before. Unlike the previous cases,
the phase integrals for ¢, and 6 cannot be evaluated in
closed form; however, simple power law approximations
to these integrals are

A 5/4
¢ = V3mkow (1 + —) , (36a)
Ko
A2
9 = 0.416 536Kow (—) . (36b)
Ko

The coupled-mode and (first-order) WKB results for
the reflectance spectrum of a Gaussian grating with
%0 = Tho/Ao = 2 mm~! and w = 30 mm are compared in
Fig. 8. A comparison with the second-order WKB results
for the same structure is shown in Fig. 9. The strength

\

0.8

0.6

0.4

wrsrssoos

0.2

Alxy

.
S
R I

-1 -0.8 -0.6

FIG. 8. Reflection spectrum for a Gaussian grating with
ko = mho/Ao = 2 mm~! and L = 30 mm. The dashed curve
is the first-order WKB approximation. The solid curve is
the coupled-mode analysis. The agreement is better near the
center of the reflection band.

4765
R
0.8 ( ‘\
0.6
0.4 J
02 !
1 08 0.6 0.4 0.2 A/,

FIG. 9. Second-order WKB results for the same structure
as in Fig. 8.

of the reflectance for detunings close to the edge of the
reflection band is overestimated by the WKB approxi-
mations for reasons similar to those discussed above: the
weakness of the barrier regions produced by the tails of
the Gaussian beam profile.

VI. CONCLUSION

Reflection-band diagrams provide a succinct and ex-
tremely useful tool in understanding the properties of
nonuniform gratings. The locations and extents of the
local photonic band gaps within the gratings provide in-
formation about the strength and phase of the reflection
coefficient. The qualitative information provided by the
reflection-band diagrams can be supplemented by a WKB
analysis of the grating, and the propagating or evanes-
cent fields within the grating. For some structures, the
WKB analysis provides accurate analytical approxima-
tions for the reflectivities, which obviates the need to nu-
merically solve coupled-mode equations. In other cases,
the WKB phase integrals must be evaluated numerically,
or approximated by other functions. However, this can
still be more computationally efficient than repeatedly
solving the coupled-mode equations.

The most important feature of the combined band dia-
gram and WKB approach is that it identifies the regions
and features of the grating that are responsible for the
observed reflectance characteristics, and it is this infor-
mation that will be of benefit in the analysis and design
of nonuniform gratings for specific applications.
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APPENDIX: WKB ANALYSIS

Different regions have to be considered in the WKB
analysis depending upon the signs of €(z) and p(z). The
local effective index n.g(z) is defined by

Ve(2)u(z),
i/ —€(2)p(2), e(z)u(z) < 0.

The local impedance Z(z) is defined by
[ Vr()/e(),
—vu(2)/e(),
iv/=u(2)/(2),

( —iv/=u(2)/e(2),

e(z)u(z) >0
neg(z) =

(A1)

1(z) >0 €(z) >0

u(z) <0 €(z) <0
Z(z) =<
u(z) >0 €(z) <0

u(z) <0 €(z) > 0.
(A2)

The first-order WKB or slowly varying amplitude so-
lutions for the effective fields £ and H satisfying the
effective-medium relations in Egs. (8) are then given by

£(2) = VIZ()| {Aexp [+i /a " nes(2) dz]

+Bexp [—i /a e (2) dz] } (A3a)
JZZTSJ{Aexp [+i /; ’ Neft (2) dz]

_Bexp [—i L *nea(2) dz] } (A3b)

The lower range of integration in the phase can be chosen
for convenience, and is chosen here to be the turning
point.

The original coupled-mode amplitudes v and v can be
represented in terms of the above WKB solutions by the
following convenient matrix relation:

H(z) =

[’;g;] = T(2) - P(¢) []‘3] , (A4)
where

¢ = /z neg(2z) dz. (A5)

The propagation matrix is
P(¢) = [e:)"’ eg'qs} . (AS6)

The impedance matrix is

VIZI[2+41 2-1

=220 20w
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The WKB solutions in Egs. (A3) lose their validity at
points z where neg(z) = 0. The WKB solutions on either
side of such turning points must be connected using the
WKB connection formulas. If A, and B, represent the
solution in the region where nZgz(z) > 0 and A_ and B_
represent the solution in the region where n2z(z) < 0,
then there are two connection formulas:

Ayl V2[1—4 1+4][3=n 0 A_
- 1—1 0 3+n||B-|’

B4 FHEES

}12] [3877 3217] [g:]’
€(z) =0, (A8b)

where 1 = sgn(8n2z/0z).

Consider a barrier located at a < z < b. The coeffi-
cients describing the propagating solutions on either side
of the barrier are related by the following connection for-
mula:

[g]«a — P(x) -W(0) - P(x) [g]m’ (49)

where

b
6= / et (2)] dz (A10)

is the barrier factor. The magnitude of the phase shift x
which occurs in the propagation matrix P(x) cannot be
determined within the WKB approximation because of
the one-sided nature of the connection formulas [10,11];
however, x — 0 as the barrier becomes stronger. All
results given here assume x = 0. Physically, the phase
shift x can be explained in terms of a slight penetration
of the incident field into the barrier before reflection and
is completely analogous to the well-known Goos-Hanchen
effect at the core-cladding boundary in waveguides.

The form of the connection matrix depends on the na-
ture of the two turning points:

(e +e7%/4)

W(o) = [_i(eO <40 i(ef — 6_0/4):' ,

(e +e7%/4)

W(0) = [ (5t e YA

i(e® —e~9/4)

—i(ef — 6—9/4):|
(e +e7?/4) |’

u(a) = p(b) =0, (Allb)



48 GRAPHICAL AND WKB ANALYSIS OF NONUNIFORM BRAGG ...

(€% +e7%/4)

weo) = [ LS G e;fé‘jll)] ,

e(a) = p(b) =0, (Allc)

—i(e® — e=9/4)

W(0) = [ AR (¢? +e=0/4) ] ’

i(e® —e=?/4)

u(a) = €(b) = 0. (Alld)

The above results and transfer matrices can be com-
bined to give the transfer matrix for any structure. The
reflection and transmission coefficients are then obtained
from the elements of the resultant transfer matrix

o= [ e [4] ao
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Finally, the WKB analysis here is a first-order analysis.
The results can be extended to second order. This will
not be done here, except for a single result. The phase
on propagation to second order is given by

6= [rantraz~ [ Snjg[;,]( P

A simple physical interpretation of the second integral is
not known at this stage.

As a rough estimate, the first-order WKB approxima-
tions are expected to be valid when the following slowly
varying condition is satisfied:

dz. (A13)

[2"(2)]* < 8nlg(2)[2(2)]. (Al4)

In practice, the WKB approximations can be accurate
beyond the limits given by the above inequality.
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